skip to main content


Search for: All records

Creators/Authors contains: "Kimmitt, Abigail A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In high-latitude species with high dispersal ability, such as long-distance migratory birds, populations are often assumed to exhibit little genetic structure due to high gene flow or recent postglacial expansion. We sequenced over 120 low-coverage whole genomes from across the breeding range of a long-distance migratory bird, the Veery (Catharus fuscescens), revealing strong evidence for isolation by distance. Additionally, we found distinct genetic structure between boreal, western montane U.S., and southern Appalachian sampling regions. We suggest that population genetic structure in this highly migratory species is detectable with the high resolution afforded by whole-genomic data because, similar to many migratory birds, the Veery exhibits high breeding-site fidelity, which likely limits gene flow. Resolution of isolation by distance across the breeding range was sufficient to assign likely breeding origins of individuals sampled in this species’ poorly understood South American nonbreeding range, demonstrating the potential to assess migratory connectivity in this species using genomic data. As the Veery’s breeding range extends across both historically glaciated and unglaciated regions in North America, we also evaluated whether contemporary patterns of structure and genetic diversity are consistent with historical population isolation in glacial refugia. We found that patterns of genetic diversity did not support southern montane regions (southern Appalachians or western U.S. mountains) as glacial refugia. Overall, our findings suggest that isolation by distance yields subtle associations between genetic structure and geography across the breeding range of this highly vagile species even in the absence of obvious historical vicariance or contemporary barriers to dispersal.

     
    more » « less
  2. Abstract

    Behavioral variation abounds in nature. This variation is important for adaptation and speciation, but its molecular basis remains elusive. Here, we use a hybrid zone between two subspecies of songbirds that differ in migration – an ecologically important and taxonomically widespread behavior---to gain insight into this topic. We measure gene expression in five brain regions. Differential expression between migratory states was dominated by circadian genes in all brain regions. The remaining patterns were largely brain-region specific. For example, expression differences between the subspecies that interact with migratory state likely help maintain reproductive isolation in this system and were documented in only three brain regions. Contrary to existing work on regulatory mechanisms underlying species-specific traits, two lines of evidence suggest that trans- (vs. cis) regulatory changes underlie these patterns – no evidence for allele-specific expression in hybrids and minimal associations between genomic differentiation and expression differences. Additional work with hybrids shows expression levels were often distinct (transgressive) from parental forms. Behavioral contrasts and functional enrichment analyses allowed us to connect these patterns to mitonuclear incompatibilities and compensatory responses to stress that could exacerbate selection on hybrids and contribute to speciation.

     
    more » « less
  3. Abstract

    Animals that engage in long-distance seasonal migration experience strong selective pressures on their metabolic performance and life history, with potential consequences for molecular evolution. Species with slow life histories typically show lower rates of synonymous substitution (dS) than “fast” species. Previous research suggests long-distance seasonal migrants have a slower life history strategy than short-distance migrants, raising the possibility that rates of molecular evolution may covary with migration distance. Additionally, long-distance migrants may face strong selection on metabolically-important mitochondrial genes due to their long-distance flights. Using over 1,000 mitochondrial genomes, we assessed the relationship between migration distance and mitochondrial molecular evolution in 39 boreal-breeding migratory bird species. We show that migration distance correlates negatively with dS, suggesting that the slow life history associated with long-distance migration is reflected in rates of molecular evolution. Mitochondrial genes in every study species exhibited evidence of purifying selection, but the strength of selection was greater in short-distance migrants, contrary to our predictions. This result may indicate effects of selection for cold tolerance on mitochondrial evolution among species overwintering at high latitudes. Our study demonstrates that the pervasive correlation between life history and molecular evolutionary rates exists in the context of differential adaptations to seasonality.

     
    more » « less
  4. Pleistocene climate cycles are well documented to have shaped contemporary species distributions and genetic diversity. Northward range expansions in response to deglaciation following the Last Glacial Maximum (LGM; approximately 21 000 years ago) are surmised to have led to population size expansions in terrestrial taxa and changes in seasonal migratory behaviour. Recent findings, however, suggest that some northern temperate populations may have been more stable than expected through the LGM. We modelled the demographic history of 19 co-distributed boreal-breeding North American bird species from full mitochondrial gene sets and species-specific molecular rates. We used these demographic reconstructions to test how species with different migratory strategies were affected by glacial cycles. Our results suggest that effective population sizes increased in response to Pleistocene deglaciation earlier than the LGM, whereas genetic diversity was maintained throughout the LGM despite shifts in geographical range. We conclude that glacial cycles prior to the LGM have most strongly shaped contemporary genetic diversity in these species. We did not find a relationship between historic population dynamics and migratory strategy, contributing to growing evidence that major switches in migratory strategy during the LGM are unnecessary to explain contemporary migratory patterns. 
    more » « less
  5. Abstract

    Female competitive behaviors during courtship can have substantial fitness consequences, yet we know little about the physiological and social mechanisms underlying these behaviors—particularly for females of polygynous lek mating species. We explored the hormonal and social drivers of female intersexual and intrasexual behavior during courtship by males in a captive population of Indian peafowl. We investigated whether (1) female non-stress induced circulating estradiol (E2) and corticosterone (CORT) levels or (2) female dominance status in a dyad predicts female solicitation behavior. We also tested whether female circulating E2 and CORT predict dominant females’ aggressive behaviors toward subordinate females in the courtship context. Our findings demonstrate that females with higher levels of circulating E2 as well as higher levels of circulating CORT solicit more courtships from males. Dominant females also solicit more courtships from males than subordinate females. Female intrasexual aggressive behaviors during courtship, however, were not associated with circulating levels of E2 or CORT. Overall, we conclude that circulating steroid hormones in conjunction with social dominance might play a role in mediating female behaviors associated with competition for mates. Experimental manipulation and measures of hormonal flexibility throughout the breeding season in relation to competitive and sexual behaviors will be necessary to further examine the link between hormonal mechanisms and female behavior in polygynous lekking systems.

     
    more » « less
  6. null (Ed.)
    Synopsis Like many scientific disciplines, the field of reproductive biology is subject to biases in terminology and research foci. For example, females are often described as coy and passive players in reproductive behaviors and are termed “promiscuous” if they engage in extra-pair copulations. Males on the other hand are viewed as actively holding territories and fighting with other males. Males are termed “multiply mating” if they mate with multiple females. Similarly, textbooks often illustrate meiosis as it occurs in males but not females. This edition of Integrative and Comparative Biology (ICB) includes a series of papers that focus on reproduction from the female perspective. These papers represent a subset of the work presented in our symposium and complementary sessions on female reproductive biology. In this round table discussion, we use a question and answer format to leverage the diverse perspectives and voices involved with the symposium in an exploration of theoretical, cultural, pedagogical, and scientific issues related to the study of female biology. We hope this dialog will provide a stepping-stone toward moving reproductive science and teaching to a more inclusive and objective framework. 
    more » « less
  7. Abstract

    Divergent migratory strategies among populations can result in population‐level differences in timing of reproduction (allochrony) and local adaptation. However, the mechanisms underlying among‐population variation in timing are insufficiently understood, particularly in females.

    We studied differences in reproductive development and its related mechanisms along the hypothalamic–pituitary–gonadal axis (HPG) in closely related migratory and sedentary (i.e. resident) female dark‐eyed juncos (Junco hyemalis) living together in sympatry during early spring. Despite exposure to the same environmental cues in early spring, residents initiate breeding prior to the departure of migrants for their breeding grounds. We investigated whether residents would be more reproductively developed than migrants based on their behavioural differences. Alternatively, females could exhibit similar reproductive development in response to the same environmental cues despite differences in migratory behaviour. To compare their degree of reproductive development during seasonal sympatry and the underlying mechanisms of these differences, we collected ovarian and liver tissue in early spring prior to migration and compared transcript abundance of genes associated with reproduction using quantitative PCR. We also used stable hydrogen isotopes to infer relative breeding and wintering latitude of migrants.

    We found higher transcript abundance of luteinizing hormone receptor and aromatase in the ovary in addition to significantly heavier ovaries in residents than in migrants. Together, these results suggest greater sensitivity and response to upstream endocrine stimulation in resident females. Transcript abundance for other receptors in the ovary and liver associated with reproduction, however, did not differ between populations. When comparing ovarian development within migrants, females with lower hydrogen isotopes (indicating higher breeding latitudes) had smaller ovaries, suggesting that longer‐distance migrations may further delay reproductive development.

    Based on differences in ovary mass and transcript abundance, we conclude that females that differ in migratory strategy also differ in timing of reproductive development. These results support that divergent migratory behaviour drives allochrony and could enable reproductive isolation between populations; mechanistic differences at the level of gonadal stimulation can explain these differences in timing of reproductive development.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less